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Abstract. We have theoretically studied electron velocity fluctuations and the resulting Johnson
(thermal) noise in a free-standing GaAs quantum wire at low and intermediate driving electric
fields. One-dimensional confinements of electrons and phonons have been taken into account.
Acoustic phonon confinement introduces infrared frequency peaks in the noise power spectrum
which are an unmistakable signature of phonon confinement and provide an experimental ‘handle’
to use in assessing the importance of such confinement. Phonon confinement also suppresses
the dc component of the noise spectral density (and the hot-carrier diffusivity) by several orders
of magnitude. When a transverse magnetic field is applied to the quantum wire, it introduces
three remarkable features: (i) it reduces the temporal decay rate of the velocity autocorrelation
function and increases the dc component of diffusivity, (ii) it promotes prolonged and persistent
oscillations in the velocity autocorrelation function which is indicative of a long memory of the
electron ensemble, and finally (iii) it red-shifts the peaks in the noise power spectrum by increasing
the length of an electron’s trajectory in momentum space between two successive phonon scattering
events.

1. Introduction

There is significant current interest in the application of quasi-one-dimensional semiconductor
structures for high-speed and low-noise electronic devices such as quantum-wire field-effect
transistors (QWFET). Such devices are expected to exhibit high transconductance, bandwidth
and unity-gain frequency as a result of the enhancement of carrier mobility accruing from
a constriction of the phase space for scattering. It is however not clear as to whether the
same constriction necessarily leads to a reduction of the thermal (Johnson) noise as well. The
purpose of this paper is to address this issue and investigate pertinent characteristics of Johnson
noise in quantum wires.

Johnson noise in a solid is caused by fluctuations in the velocity of current carriers
(electrons or holes) interacting with scatterers. It is thus expected that strong confinement
of both electrons and phonons (the major scatterers) may have a significant effect on velocity
fluctuations and the noise power spectrum. In this paper, we have studied velocity fluctuations
in a free-standing GaAs quantum wire using a Monte Carlo simulation. Both electron and
phonon confinements have been taken into account rigorously [1, 2]. In the past, similar
studies [3] took into account electron confinement, but not phonon confinement. We found
that phonon confinement is extremely important and leaves a strong signature in the noise power
spectrum, as well as the temporal decay characteristics of the velocity autocorrelation function.
In fact, measurement of the noise power spectrum offers a convenient tool for assessing
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experimentally the presence and importance of phonon confinement effects in quasi-one-
dimensional structures. Moreover, acoustic phonon confinement decreases the dc component
of the noise spectral density (and hence the carrier diffusivity) bythree to fiveorders of
magnitude and this in itself has important device implications.

Finally, we have investigated the effect of an external magnetic field on velocity
fluctuations (and noise) since a magnetic field is known to strongly suppress carrier back-
scattering events [5] and produce other effects associated with modifications of the carrier
dispersion relation. We found that a magnetic field introduces additional features which depend
strongly on whether phonon confinement is taken into account or not. For instance, a bulk
phonon model predicts that diffusivity will decrease in a magnetic field whereas the confined
phonon model reveals that the opposite is true. We also found that the dc component of the
diffusion coefficient calculated from the dc component of the noise spectral density cannot be
related to the mobility and carrier temperature by the Einstein relation. This is not surprising
given the dominance of hot-electron effects which invalidate the Einstein relation and the
existence of non-Markovian scattering processes which affect the usual relationship between
the noise spectral density and the carrier diffusivity.

This paper is organized as follows. In the next section, we briefly describe our theoretical
approach and the Monte Carlo simulator. This is followed by results and discussion. The last
section details our conclusions.

2. Theory

We will calculate the temporal characteristics of the velocity autocorrelation function and
Johnson noise power spectrum in a free-standing GaAs quantum wire of rectangular cross-
section. An electric field is applied along the length of the wire to induce carrier transport
and an external magnetic field is applied in a transverse direction parallel to the thickness
dimension as shown in the inset of figure 1.

There is a sequence of steps in the calculation. We first solve the Schrödinger equation
in the quantum wire (with only the transverse magnetic field present) to obtain the wave
functions and the energy dispersion relations of the confined hybrid magnetoelectric states
of electrons [6]. Next, the confined acoustic phonon normal-mode amplitudes and the
dispersion relations of up to the twenty lowest-energy phonon branches (the so-called ‘width’
and ‘thickness’ modes) are found by solving the elasticity equation for the quantum wire
numerically [2]. These branches span an energy range of up to 10kT (T = lattice temperature);
as a result, higher phonon branches can be neglected since their occupation probabilities are
extremely small. From the electron and phonon dispersion relations, we have calculated the
joint electron–phonon density of states and hence the electron–phonon scattering rates based
on Fermi’s Golden Rule. These rates are then used in a Monte Carlo simulator to simulate
Boltzmann transport and obtain an electron ensemble’s average velocity as a function of time.
From these data, we calculate the temporal decay of the velocity autocorrelation function in
the presence of a driving electric field.

The Monte Carlo simulator is a modified code for quantum wires. The basic algorithm is
described in references [3, 7–9] and it was modified to account for the complications assoc-
iated with confined acoustic phonon scattering in a magnetic field. When acoustic phonons are
confined, we have to determine the final state of an electron after a scattering event based on the
initial energy of the electron, the initial and final magnetoelectric subbands occupied, the type
of phonon mode (width or thickness) that mediated the scattering process, the phonon branch
involved, and the type of the scattering process (forward absorption, backward absorption,
forward emission, or backward emission). This requires an intensive search procedure which
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Figure 1. Temporal evolution of the velocity autocorrelation function at magnetic flux densities
of 0 T (upper panel) and 10 T (lower panel). The driving electric field is 20 V cm−1, the lattice
temperature is 30 K, and the electron temperature is 108 K. A bulk acoustic phonon model has been
assumed. The inset shows the geometry of the quantum wire and the orientations of the electric
and magnetic fields.

is implemented through a Von Neumann technique [3] and a rejection algorithm. We collect
velocity statistics after the steady state is achieved by using a uniform sampling in time.

The velocity autocorrelation function is defined as

C(T ) = 〈δv(t) δv(t + T )〉 (1)

whereδv = v(t) − vd (with v(t) being the instantaneous carrier velocity at an instant of
time t andvd the steady-state (ensemble-average) drift velocity). The noise spectral density
is obtained by evaluating the cosine transform of the autocorrelation function (the Wiener–
Kintchine theorem):

S(f ) = 2
∫ ∞

0
dT cos(2πf T )C(T ) (2)

and it is usually related to the dc component of the diffusivityD(0) according to

S(f ) = 4D(0)

1 + (2πf τm)2
(3)

whereτm is the ensemble-average momentum relaxation time. The validity of equation (3)
is predicated on the assumption that velocity fluctuations decayexponentiallyin time with a
characteristic momentum relaxation timeτm. This is evidently not a good assumption since
our scattering processes (acoustic and optical phonon scattering) are non-Markovian in that
they are neither elastic nor isotropic. For such processes, a unique relaxation time cannot be
defined [4]. Hence, equation (3) is suspect. In this paper, we will nonetheless calculate an
‘effective’ diffusion coefficient from equation (3) and show that it differs significantly from
the Einstein diffusivity.
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3. Results and discussion

We consider a GaAs free-standing quantum wire of width 300 Å and thickness 40 Å. Free-
standing wires are now routinely fabricated using a variety of simple techniques such as
impregnating naturally occurring 60 Å diameter channels in chrysotile asbestos with a molten
semiconductor [13]. Carbon nanotubes are another example of free-standing wires. The
routine availability of such systems has fuelled a commensurately increased interest in their
transport properties.

We have studied electron transport using Monte Carlo simulation of carrier dynamics.
The Monte Carlo simulation was carried out with an ensemble of 1000 particles at a lattice
temperature of 30 K and magnetic flux densities of 0 and 10 T. The number of particles is
more than sufficient to make the quantities in equations (1)–(3) independent of the ensemble
size. The simulations were carried out at two different electric field strengths: a low field of
20 V cm−1 and an intermediate field of 200 V cm−1.

In simulating electron dynamics in the Monte Carlo simulator, we considered polar and
non-polar acoustic phonon interactions, as well as polar and surface optical phonon interactions.
Impurity and interface scattering rates are typically three orders of magnitude smaller and
were hence neglected. Binary electron–electron scattering will only interchange two electrons
in momentum space and hence not produce any change in the momentum of the ensemble
as a whole. Thus, it will not cause theensemble-averagedvelocity to fluctuate in time.
Consequently, it too is neglected. Since a major purpose of this work is to investigate the
effect of acoustic phonon confinement on noise and velocity fluctuations, we have computed
the relevant quantities using both bulk and confined acoustic phonon models. This allows us
to compare the bulk and confined models.

3.1. The bulk acoustic phonon model

We first consider acoustic phonons as bulk modes. In figures 1 and 2, we show the temporal
decay of the velocity autocorrelation function for the two different driving electric field
strengths mentioned. The upper panel shows the results in the absence of any magnetic field
and the lower panel shows the results in the presence of a transverse magnetic flux density of
10 T.

Looking at figure 1, it is obvious that the major effect of the magnetic field is to induce
(decaying) oscillations in the autocorrelation function. These oscillations are a well-known
signature of streaming in quasi-one-dimensional structures and arise when polar optical
phonon scattering is the dominant energy relaxation mechanism. The autocorrelation function
oscillates because an electron will be rapidly accelerated to the polar optical phonon emission
threshold by the electric field, emit almost immediately, and fall to the bottom of the subband,
repeating this process again and again. This oscillation ink-space (or energy space) leads to
permanent oscillations in the velocity and mean energyif the entire ensemble is more or less
in phase. When polar optical phonon scattering is overwhelmingly dominant, the ensemble
remains in phase for a long time and the oscillations show up in the velocity autocorrelation
function. This is a characteristic of ‘streaming’ transport and has been examined in ref-
erences [3, 10, 11]. It should be noted that in a quantum wire, there is a singularity in the
emission rate at the polar optical phonon energy because of the Van Hove singularity in the
density of final states. This causes an almost impenetrable bottleneck at the phonon energy
and makes streaming oscillations much more pronounced in quantum wires than in quantum
wells and the bulk.

It is obvious that the phase of the oscillation will be randomized if there is significant
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Figure 2. Temporal evolution of the velocity autocorrelation function at magnetic flux densities of
0 T (upper panel) and 10 T (lower panel). The driving electric field is 200 V cm−1 and the lattice
temperature is 30 K. The electron temperature is 133 K at 0 T and 176.6 K at 10 T. A bulk acoustic
phonon model has been assumed. The inset shows the electron’s energy dispersion relation at
magnetic flux densities of 0 and 10 T.

acoustic phonon scattering since that will randomly kick electrons out of phase with the rest of
the ensemble. At a low driving electric field of 20 V cm−1, acoustic phonon scattering usually
dominates transport. Hence, the oscillations are ordinarily suppressed. However, a magnetic
field brings out the oscillations because it quenches bulk acoustic phonon scattering [5]
while increasing polar optical phonon scattering [12]. Thus, a magnetic field is conducive
to streaming. Since the streaming oscillations will induce a peak in the noise spectral density,
a magnetic field basically allows one to transfer noise energy from low frequencies to the
higher-frequency peak by promoting streaming. Thus, it allows (in an appropriate context)
beneficial ‘noise engineering’.

Looking at figure 2, we find that streaming oscillations are much more pronounced when
the driving electric field is 200 V cm−1. At this intermediate electric field strength, polar
optical phonon scattering is overwhelmingly dominant over acoustic phonon scattering and
hence the electron ensemble streams in phase. A magnetic field increases the period of the
oscillation. The oscillation periodtp is given by [7]

tp = h̄ 1k

eE
+ τop (4)

wheree is the electronic charge,E is the driving electric field,τop is the mean time that elapses
after an electron crosses the polar optical phonon emission threshold and before it emits, and
1k is the change in the electron’s wavevector (caused by the accelerating fieldE) during the
free flight between two successive polar optical phonon scattering events.

In a magnetic field, the momentump of an electron transforms according toEp′ = Ep + e EA
where EA is the magnetic vector potential. As a result, the electron trajectories are elongated
in k-space. Another way of viewing this is to look at the electron dispersion relations with
and without a magnetic field as shown in the inset of figure 2. Obviously, in a magnetic field,
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an electron’s wavevector will have to increase more to gain the same amount of energy as in
the absence of a magnetic field. Since1k is larger in a magnetic field, the oscillation period
increases.

We can check the validity of our picture with a simple comparison. If we assume that an
electron scatters soon after it reaches the threshold for polar optical phonon emission and that
such a scattering drops the electron down to near the bottom of the conduction band, then we
can show that

tp = τop

2
+

√√√√(τop
2

)2

+

√
2m∗h̄ω0(

√
2m∗h̄ω0 + eEτop)

e2E2
(5)

in the absence of any magnetic field (when the band structure is parabolic).
ForE = 200 V cm−1, the above equation yields a value oftp = 8 ps (τop ≈ 0). The

observed period in figure 2 (B = 0 T) is about 7 ps which is close enough to the estimated
value to confirm that this simple picture originally presented in references [3,7,10,11] is quite
reasonable.

Figure 3. The spectral density of Johnson (or thermal) noise at magnetic flux densities of 0 T
(upper panel) and 10 T (lower panel). The driving electric field is 20 V cm−1. A bulk acoustic
phonon model has been assumed.

In figures 3 and 4, we plot the Johnson noise spectral densities which are cosine transforms
of the velocity autocorrelation functions. At a field strength of 20 V cm−1, the spectral density
in figure 3 has a very broad peak in the absence of any magnetic field, but a well-resolved
narrower peak in a magnetic flux density of 10 T. Obviously, the well-resolved peak is caused by
the magnetic field promoting carrier streaming. The rapid oscillations in the high-frequency
tail of the spectral density (in a magnetic field) are just an artifact of the cosine transform
algorithm and should not be taken as real.

In figure 4, which corresponds to a driving electric field of 200 V cm−1, we see very well-
resolved and narrow peaks associated with coherent streaming. A magnetic field red-shifts the
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Figure 4. The spectral density of Johnson (or thermal) noise at magnetic flux densities of 0 T
(upper panel) and 10 T (lower panel). The driving electric field is 200 V cm−1. A bulk acoustic
phonon model has been assumed.

peak slightly because it increases the period of the oscillations in the autocorrelation function
as discussed before.

We point out that the correlation functions in figures 1 and 2 do not decay exponentially
with time (since the scattering processes are not Markovian) and consequently the lineshapes of
the noise spectral density peaks in figures 3 and 4 are not Lorentzian. As discussed before, this
immediately makes the application of equation (3) suspect. Indeed, the diffusion coefficient
calculated from equation (3) cannot be related to the mobility and electron temperature (found
from the Monte Carlo simulation) by the Einstein relation—a point that we discuss later.
Nonetheless, we have calculated an ‘effective’ diffusivity from equation (3) and examined its
physical characteristics.

In figure 5, we show the dc component of this ‘effective’ diffusion coefficientD(0) as
a function of driving electric field at two different magnetic field strengths. The diffusion
coefficient has a non-monotonic dependence on the electric field and has a broad peak. This
feature is quite common in quantum wires and was also found in reference [3] where the peak
was explained in terms of suppression of acoustic phonon scattering with increasing electric
field. The final drop in the diffusivity is caused by the onset of streaming at higher electric
fields [3].

In this paper, we have studied the effect of an external magnetic field onD(0). A magnetic
field decreases the diffusivity. Note that diffusivity is given by

D(0) = S(0)/4=
∫ ∞

0
dT C(T ) (6)

and hence it is theareaunder the autocorrelation function in figure 1 or 2. A magnetic field
has two different effects. First, it decreases the decay rate of the autocorrelation function since
it increases the momentum relaxation time by suppressing backscattering events [5]. This
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Figure 5. The diffusivity versus electric field at magnetic flux densities of 0 T (solid lines) and
10 T (broken lines). A bulk acoustic phonon model has been assumed.

tends to increase the area under the autocorrelation curve and thus increase the diffusivity.
On the other hand, a magnetic field brings out oscillations in the autocorrelation function by
promoting carrier streaming. This tends to reduce the area under the autocorrelation curve since
the autocorrelation oscillates between positive and negative values. At the low and moderate
electric field strengths that we consider in figure 5, the second effect is more important and
hence the diffusivity is reduced by a magnetic field.

Table 1. Comparison of Wiener–Kintchine and Einstein diffusivities for the bulk phonon model.

Magnetic Electric Electron Mobility D1 D2

field (T) field (V cm−1) temperature (K) (cm2 V−1 s−1) (cm2 s−1) (cm2 s−1)

0 20 108 110000 0.22 516
10 20 108 140000 0.04 658
0 200 133.2 61500 0.38 350

10 200 176.6 44550 0.38 340

Let us compare the diffusivities obtained in figure 5 with those calculated from the Einstein
relation. We will brand the diffusivity in figure 5 as the Wiener–Kintchine diffusivity and label
it D1 while that calculated from the Einstein relation is termed the Einstein diffusivity and
labelledD2. This comparison is shown in table 1.

Obviously, the two diffusivities are vastly different and this is because the existence of
hot-electron effects gives the electron distribution function odd shapes in velocity space, with
the result that(1/2)m∗(v−vd)2 6= kTe whereTe is the electron temperature. Consequently, the
Einstein relation is inapplicable. Second, the existence of non-Markovian scattering processes
immediately makes equation (3) suspect. Price [15] has derived a different expression for the
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Figure 6. Temporal evolution of the velocity autocorrelation function at magnetic flux densities of
0 T (upper panel) and 10 T (lower panel). The driving electric field is 20 V cm−1 and the lattice (as
well as the electron) temperature is 30 K. A confined acoustic phonon model has been assumed.

hot-carrier diffusivity which can be approximately written as

DPrice= 〈(v − vd)vτ 〉 (7)

wherev is the particle velocity,vd is the drift velocity, andτ is the mean time between scattering
events. The ensemble averaging denoted by〈 〉 is carried out over the carrier distribution
function. If we heuristically assume thatτ is constant and equal to the momentum relaxation
time calculated from the dc mobility and moreover that(1/2)m∗(v − vd)2 = kTe, then the
Price diffusivity reduces to the Einstein diffusivity. However, in quantum wires, interactions are
anisotropic and biased in favour of small-angle scatterings, soτm > τ . Furthermore, streaming
(which orders the electron motion) tends to make(1/2)m∗(v−vd)2 < kTe. Consequently, the
Price diffusivity will certainly be less than the Einstein diffusivity and probably fall in between
D1 andD2.

3.2. Confined acoustic phonons

In figures 6 and 7, we show the velocity and autocorrelation functions when acoustic phonons
are treated as confined modes according to the prescription of reference [1, 2, 14]. There are
rapid oscillations with multiple frequencies in the velocity autocorrelation function. These
are caused by the same streaming effect, but this time the streaming agents are confined
acoustic phonons with discrete energy rather than polar optical phonons. Since there are
multiple phonon branches (and hence acoustic phonons with a plethora of frequencies), there
are multiple periods of the oscillations. The periods of these oscillations are much smaller
(see equation (2)) since the acoustic phonon energies are much smaller than polar optical
phonon energies. A magnetic field appears to ‘clean up’ the oscillations somewhat since (i) it
increases the period by elongating the electron trajectories ink-space, and (ii) the selection
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Figure 7. Temporal evolution of the velocity autocorrelation function at magnetic flux densities of
0 T (upper panel) and 10 T (lower panel). The driving electric field is 200 V cm−1 and the lattice
(as well as the electron) temperature is 30 K. A confined acoustic phonon model has been assumed.

Figure 8. The spectral density of Johnson (or thermal) noise at magnetic flux densities of 0 T
(upper panel) and 10 T (lower panel). The driving electric field is 20 V cm−1 and the lattice (as
well as the electron) temperature is 30 K. A confined acoustic phonon model has been assumed.
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Figure 9. The spectral density of Johnson (or thermal) noise at magnetic flux densities of 0 T
(upper panel) and 10 T (lower panel). The driving electric field is 200 V cm−1 and the lattice (as
well as the electron) temperature is 30 K. A confined acoustic phonon model has been assumed.

rules for scattering (longitudinal momentum and energy conservation) are more restrictive in
the presence of a magnetic field. Since backward scattering is strongly suppressed, only small
momentum transfers via forward scattering are allowed. Thus, fewer phonon modes (which
have small wavevectors and the correct energy) can participate in the scattering. As a result,
there are fewer frequency components in the autocorrelation function.

In figures 8 and 9, we show the Johnson noise power spectrums. The infrared frequency
peaks arise from the streaming oscillations in the velocity autocorrelation functions caused by
confinedacoustic phonon interactions. Thus, these peaks are a signature of acoustic phonon
confinement. A magnetic field red-shifts the peaks since it increases the period of the streaming
oscillations.

In figure 10, we plot the diffusivity as a function of electric field strength for two different
magnetic fields. The difference between this figure and figure 5 is that here the acoustic
phonons are treated as confined modes rather than bulk modes. Comparing this figure with
figure 5, we find two major differences: (i) the diffusivity is lower by three orders of magnitude,
and (ii) the dependence on the magnetic field is reversed. The first feature is caused by the
fact that acoustic phonon confinement increases the electron–phonon scattering rate by several
orders of magnitude [14]. This decreases the diffusivity. The second feature is caused by
the fact that while a magnetic field reduces the decay rate of the velocity autocorrelation
function (by suppressing backscattering) and thus increases the area under the autocorrelation
curve, this is no longer offset by the fact that a magnetic field enhances oscillations in the
autocorrelation function. In fact, the oscillations are there with or without a magnetic field.
Thus, the area under the autocorrelation curve certainly increases in a magnetic field and this
increases the diffusivity. As a result, the magnetic field dependence of the diffusivity shows
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Figure 10. The diffusivity versus electric field at magnetic flux densities of 0 T (solid lines) and
10 T (broken lines). A confined acoustic phonon model has been assumed.

opposite behaviours in figures 5 and 10.
We will once again compare the Wiener–Kintchine diffusivity and the Einstein diffusivity

as we did in the case of the bulk phonon model. This comparison is shown in table 2. Again,
we observe the same trend as in the case of the bulk phonon model.

Table 2. Comparison of Wiener–Kintchine and Einstein diffusivities for the confined phonon
model.

Magnetic Electric Electron Mobility D1 D2

field (T) field (V cm−1) temperature (K) (cm2 V−1 s−1) (cm2 s−1) (cm2 s−1)

0 20 30 375 8× 10−6 0.975
10 20 30 215 22× 10−6 0.559
0 200 30 88.5 12× 10−6 0.23

10 200 30 159 18× 10−6 0.413

Before concluding, we point out two additional features. The extremely strong coupling of
electrons toconfinedacoustic phonons causes the diffusivity to plummet, resulting in mean free
paths on the order of 1 nm. Such mean free paths are observed in dirty metals on which a large
number of mesoscopic experiments have been carried out [16]. However, in those systems,
the mean free path is determined primarily by elastic scatterings which do not randomize an
electron’s phase. Hence the phase-breaking length is much larger than 1 nm. However, in our
case, the mean free path is determined entirely by phase-breaking inelastic scatterings resulting
in phase-breaking lengths of∼1 nm. Hence, phonon confinement has a very deleterious effect
on phase coherence; one would not use free-standing quantum wires for quantum interference
experiments. The high phonon scattering rate also explains why the electron temperature is
equal to the lattice temperature even at 30 K. The extremely high confined acoustic phonon
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emission rate quickly equilibriates the electron population with the lattice, thus precluding any
serious non-equilibrium phenomena.

4. Conclusions

In this paper, we have shown the effects of acoustic phonon confinement on Johnson noise
and carrier diffusivity in a free-standing quantum wire. Since it is generally very difficult
to demonstrate unambiguously acoustic phonon confinement in quantum structures, the
appearance of new noise peaks at well-separated frequencies and a drastic reduction of carrier
diffusivity that are caused by acoustic phonon confinement provide an important diagnostic
technique for monitoring the existence and dominance of phonon confinement. Of course, it
is understood that measurement of noise power spectra at infrared frequencies is a very ‘tall
order’ and may stretch beyond current state of the art. However, future developments in this
direction may allow it to happen. Thus, we believe that these results will find applications in
the experimental study of carrier transport in low-dimensional systems.
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